हिंदी

If Sec θ = 13 12 , Find the Values of Other Trigonometric Ratios. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.

उत्तर

\[\sec\theta = \frac{13}{12}\]              (Given)
\[\therefore \cos\theta = \frac{1}{\sec\theta} = \frac{1}{\frac{13}{12}} = \frac{12}{13}\]
We have,

\[1 + \tan^2 \theta = \sec^2 \theta\]

\[ \Rightarrow \tan\theta = \sqrt{\sec^2 \theta - 1}\]

\[ \Rightarrow \tan\theta = \sqrt{\left( \frac{13}{12} \right)^2 - 1}\]

\[ \Rightarrow \tan\theta = \sqrt{\frac{169}{144} - 1}\]

\[\Rightarrow \tan\theta = \sqrt{\frac{169 - 144}{144}} = \sqrt{\frac{25}{144}}\]
\[ \Rightarrow \tan\theta = \frac{5}{12}\]
\[ \therefore \cot\theta = \frac{1}{\tan\theta} = \frac{1}{\frac{5}{12}} = \frac{12}{5}\]
Now,

\[\tan\theta = \frac{\sin\theta}{\cos\theta}\]

\[ \Rightarrow \sin\theta = \tan\theta \times \cos\theta\]

\[ \Rightarrow \sin\theta = \frac{5}{12} \times \frac{12}{13} = \frac{5}{13}\]

\[ \therefore cosec\theta = \frac{1}{\sin\theta} = \frac{1}{\frac{5}{13}} = \frac{13}{5}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Problem Set 6 [पृष्ठ १३८]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
अध्याय 6 Trigonometry
Problem Set 6 | Q 4 | पृष्ठ १३८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Without using trigonometric tables, evaluate the following:

`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`


if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`


Solve.
sin42° sin48° - cos42° cos48°


Evaluate:

`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2)  cos45^circ`


A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`


Use tables to find cosine of 8° 12’


Use tables to find the acute angle θ, if the value of tan θ is 0.7391


Write the maximum and minimum values of sin θ.


If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]

 

If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\] 


The value of tan 10° tan 15° tan 75° tan 80° is 


Prove that:

\[\frac{sin\theta  \cos(90°  - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2


Find the value of the following:

`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`


Find the value of the following:

sin 21° 21′


If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.


If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.


The value of (tan1° tan2° tan3° ... tan89°) is ______.


Prove the following:

tan θ + tan (90° – θ) = sec θ sec (90° – θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×