Advertisements
Advertisements
प्रश्न
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
उत्तर
We have,
\[1 + \tan^2 \theta = \sec^2 \theta\]
\[ \Rightarrow \tan\theta = \sqrt{\sec^2 \theta - 1}\]
\[ \Rightarrow \tan\theta = \sqrt{\left( \frac{13}{12} \right)^2 - 1}\]
\[ \Rightarrow \tan\theta = \sqrt{\frac{169}{144} - 1}\]
\[\Rightarrow \tan\theta = \sqrt{\frac{169 - 144}{144}} = \sqrt{\frac{25}{144}}\]\[ \Rightarrow \tan\theta = \frac{5}{12}\]
\[ \therefore \cot\theta = \frac{1}{\tan\theta} = \frac{1}{\frac{5}{12}} = \frac{12}{5}\]
\[\tan\theta = \frac{\sin\theta}{\cos\theta}\]
\[ \Rightarrow \sin\theta = \tan\theta \times \cos\theta\]
\[ \Rightarrow \sin\theta = \frac{5}{12} \times \frac{12}{13} = \frac{5}{13}\]
\[ \therefore cosec\theta = \frac{1}{\sin\theta} = \frac{1}{\frac{5}{13}} = \frac{13}{5}\]
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`
Solve.
sin42° sin48° - cos42° cos48°
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Use tables to find cosine of 8° 12’
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Write the maximum and minimum values of sin θ.
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
The value of tan 10° tan 15° tan 75° tan 80° is
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
Find the value of the following:
sin 21° 21′
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.
The value of (tan1° tan2° tan3° ... tan89°) is ______.
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)