हिंदी

If 160 3 Tan θ = a B , Then a Sin θ + B Cos θ a Sin θ − B Cos θ - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]

 

विकल्प

  • \[\frac{a^2 + b^2}{a^2 - b^2}\]

  • \[\frac{a^2 - b^2}{a^2 + b^2}\]

  • \[\frac{a + b}{a - b}\]

  • \[\frac{a - b}{a + b}\]

MCQ

उत्तर

Given :` tan θ = a/b' 

We have to find the value of following expression in terms of a and b

We know that:  `tanθ="Perpendicular"/"Base"`

⇒`" Base" =b` 

⇒` "Perpendicular=a"` 

⇒`" Hypotenuse"=sqrt (a^2+b^2)` 

Now we find,

`(a sinθ+b cos θ)/(a sinθ-b cos θ)=(a(a/(a^2+b^2))+b (b/(a^2+b^2)))/(a(a/(a^2+b^2))-b(b/(a^2+b^2)))` 

=`((a^2+b^2)/(a^2+b^2))/((a^2-b^2)/(a^2+b^2))`

=`(a^2+b^2)/(a^2-b^2)`

Hence the correct option is  (a)

 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.5 | Q 2 | पृष्ठ ५६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°


For triangle ABC, show that : `tan  (B + C)/2 = cot  A/2`


Evaluate:

`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`


Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°


Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`


Use tables to find cosine of 26° 32’


Evaluate:

`sec26^@ sin64^@ + (cosec33^@)/sec57^@`


Evaluate:

`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`


Prove that:

tan (55° - A) - cot (35° + A)


If A and B are complementary angles, prove that:

cot B + cos B = sec A cos B (1 + sin B)


If A and B are complementary angles, prove that:

cot A cot B – sin A cos B – cos A sin B = 0


What is the maximum value of \[\frac{1}{\sec \theta}\] 


If 3 cos θ = 5 sin θ, then the value of

\[\frac{5 \sin \theta - 2 \sec^3 \theta + 2 \cos \theta}{5 \sin \theta + 2 \sec^3 \theta - 2 \cos \theta}\] is?

In the following figure  the value of cos ϕ is 


Prove that:

\[\frac{sin\theta  \cos(90°  - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


If sin θ =7/25, where θ is an acute angle, find the value of cos θ.


Express the following in term of angles between 0° and 45° :

sin 59° + tan 63°


Find the value of the following:

tan 15° tan 30° tan 45° tan 60° tan 75°


Find the value of the following:

sin 21° 21′


Choose the correct alternative:

If ∠A = 30°, then tan 2A = ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×