Advertisements
Advertisements
प्रश्न
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
विकल्प
\[\frac{a^2 + b^2}{a^2 - b^2}\]
\[\frac{a^2 - b^2}{a^2 + b^2}\]
\[\frac{a + b}{a - b}\]
\[\frac{a - b}{a + b}\]
उत्तर
Given :` tan θ = a/b'
We have to find the value of following expression in terms of a and b
We know that: `tanθ="Perpendicular"/"Base"`
⇒`" Base" =b`
⇒` "Perpendicular=a"`
⇒`" Hypotenuse"=sqrt (a^2+b^2)`
Now we find,
`(a sinθ+b cos θ)/(a sinθ-b cos θ)=(a(a/(a^2+b^2))+b (b/(a^2+b^2)))/(a(a/(a^2+b^2))-b(b/(a^2+b^2)))`
=`((a^2+b^2)/(a^2+b^2))/((a^2-b^2)/(a^2+b^2))`
=`(a^2+b^2)/(a^2-b^2)`
Hence the correct option is (a)
APPEARS IN
संबंधित प्रश्न
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Use tables to find cosine of 26° 32’
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
Evaluate:
`(cos75^@)/(sin15^@) + (sin12^@)/(cos78^@) - (cos18^@)/(sin72^@)`
Prove that:
tan (55° - A) - cot (35° + A)
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
What is the maximum value of \[\frac{1}{\sec \theta}\]
If 3 cos θ = 5 sin θ, then the value of
In the following figure the value of cos ϕ is
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°
Find the value of the following:
sin 21° 21′
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?