Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?
विकल्प
1
0
`1/sqrt(3)`
`sqrt(3)`
उत्तर
`sqrt(3)`
tan 2A = tan 60° = `sqrt(3)`.
APPEARS IN
संबंधित प्रश्न
If tan A = cot B, prove that A + B = 90
Write all the other trigonometric ratios of ∠A in terms of sec A.
Evaluate.
sin(90° - A) cosA + cos(90° - A) sinA
Evaluate.
sin235° + sin255°
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Use trigonometrical tables to find tangent of 42° 18'
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.