Advertisements
Advertisements
प्रश्न
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
विकल्प
cot2 A
cot2 B
−tan2 A
−cot2 A
उत्तर
We have:
`A+B=90°`
`⇒ B=90°-A`
We have to find the value of the following expression
`(tan A tan B+tan A cot B)/(sin A sec B)-sin ^2 B/cos^2 A`
so
`(tan A tan B+tan A cot B )/(sin A sec B)- sin^2 B/cos^2 A`
`(tan A tan (90°-A)+ tan A cot (90°-A))/(sin A sec (90°-A))-sin^2(90°-A)/cos^2 A`
=` (tan A cot A + tan A tan A)/(sin A cosec A)-cos^2A/cos^2 A`
= `1+tan^2 A-1`
=` tan ^2 A`
=` tan ^2(90°-B)`
=` cot^2 B`
APPEARS IN
संबंधित प्रश्न
Solve.
`cos55/sin35+cot35/tan55`
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Use tables to find cosine of 8° 12’
Use trigonometrical tables to find tangent of 37°
Evaluate:
`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°.
Write the value of tan 10° tan 15° tan 75° tan 80°?
The value of cos2 17° − sin2 73° is
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
The value of tan 1° tan 2° tan 3° ...... tan 89° is
The value of tan 10° tan 15° tan 75° tan 80° is
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
If sec A + tan A = x, then sec A = ______.