Advertisements
Advertisements
प्रश्न
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
उत्तर
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
= `sin(90^circ - 10^circ)/(cos10^circ) + sin(90^circ - 31^circ)sec31^circ`
= `cos10^circ/(cos10^circ) + cos31^circ/cos31^circ`
= 1 + 1
= 2
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Use tables to find cosine of 9° 23’ + 15° 54’
Use tables to find the acute angle θ, if the value of sin θ is 0.6525
If A and B are complementary angles, prove that:
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
The value of tan 1° tan 2° tan 3° ...... tan 89° is
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
If tan θ = 1, then sin θ . cos θ = ?