Advertisements
Advertisements
प्रश्न
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
उत्तर
cos2 A – cos A = 0
`=>` cos A (cos A – 1) = 0
`=>` cos A = 0 or cos A = 1
We know cos 90° = 0 and cos 0° = 1
Hence, A = 90° or 0°
APPEARS IN
संबंधित प्रश्न
Evaluate `(tan 26^@)/(cot 64^@)`
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
Solve.
`cos22/sin68`
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
The value of cos2 17° − sin2 73° is
Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.