Advertisements
Advertisements
प्रश्न
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
उत्तर
Given `3 cos theta = 1`
We have to find the value of the expression `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
We have
`3 cos theta = 1`
`=> cos theta = 1/3`
`sin theta = sqrt(1 - cos^2 theta) = sqrt(1- (1/3)^3) = sqrt8/3`
`tan theta = sin theta/cos theta = (sqrt8/3)/(1/3) = sqrt8`
Therefore,
`(6 sin^2 theta + tan^2 theta)/(4 cos theta) = (6 xx (sqrt8/3)^2 + (sqrt8)^2)/(4 xx 1/3)`
= 10
Hence, the value of the expression is 10.
APPEARS IN
संबंधित प्रश्न
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
Solve.
`cos22/sin68`
Solve.
`sec75/(cosec15)`
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Use tables to find sine of 21°
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
Prove that:
sec (70° – θ) = cosec (20° + θ)
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
If the angle θ = –45° , find the value of tan θ.
∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.
What is the maximum value of \[\frac{1}{\sec \theta}\]
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
The value of cos2 17° − sin2 73° is
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`