हिंदी

If 3 Cos Theta = 1, Find the Value of (6 Sin^2 Theta + Tan^2 Theta)/(4 Cos Theta) - Mathematics

Advertisements
Advertisements

प्रश्न

if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`

उत्तर

Given `3 cos theta = 1`

We have to find the value of the expression `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`

We have

`3 cos theta = 1`

`=> cos theta = 1/3`

`sin theta = sqrt(1 - cos^2 theta) =  sqrt(1- (1/3)^3) = sqrt8/3`

`tan theta = sin theta/cos theta = (sqrt8/3)/(1/3) = sqrt8`

Therefore,

`(6 sin^2 theta + tan^2 theta)/(4 cos theta) = (6 xx (sqrt8/3)^2 + (sqrt8)^2)/(4 xx 1/3)`

= 10

Hence, the value of the expression is 10.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.2 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.2 | Q 9 | पृष्ठ ५४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ


Solve.
`cos22/sin68`


Solve.
`sec75/(cosec15)`


Evaluate:

`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`


Find the value of x, if sin 3x = 2 sin 30° cos 30°


Use tables to find sine of 21°


Use tables to find the acute angle θ, if the value of sin θ is 0.4848


Prove that:

sec (70° – θ) = cosec (20° + θ)


If A and B are complementary angles, prove that:

cosec2 A + cosec2 B = cosec2 A cosec2 B


If the angle θ = –45° , find the value of tan θ.


∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.


What is the maximum value of \[\frac{1}{\sec \theta}\] 


If \[\cos \theta = \frac{2}{3}\]  find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]


Given 

\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]


If tan2 45° − cos2 30° = x sin 45° cos 45°, then x


The value of cos2 17° − sin2 73° is 


The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\] 


Prove that :

tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]


A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.


Find the value of the following:

`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×