Advertisements
Advertisements
प्रश्न
If the angle θ = –45° , find the value of tan θ.
उत्तर
We know, tan(−θ) = −tanθ
45° = 1
When θ = –45°,
tan(−45°) = −tan45° = −1
APPEARS IN
संबंधित प्रश्न
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
Evaluate cosec 31° − sec 59°
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
Evaluate.
`cos^2 26^@+cos65^@sin26^@+tan36^@/cot54^@`
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
Use tables to find sine of 34° 42'
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°.
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
If x and y are complementary angles, then ______.
Sin 2B = 2 sin B is true when B is equal to ______.