हिंदी

If θ is an Acute Angle Such that Sec2 θ = 3, Then the Value of Tan 2 θ − C O S E C 2 θ Tan 2 θ + C O S E C 2 θ - Mathematics

Advertisements
Advertisements

प्रश्न

If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]

विकल्प

  • \[\frac{4}{7}\]

  • \[\frac{3}{7}\]

  • \[\frac{2}{7}\]

  • \[\frac{1}{7}\]

MCQ

उत्तर

Given that:

`sec^2θ=3` 

`secθ=sqrt3` 

We need to find the value of the expression 

`(tan^2θ-cosec^2θ)/(tan^2θ+cosec^2θ)` 

`"since"  secθ="Hypotenuse"/"Base"`. so 

⇒` "Hypotenuse"= sqrt3` 

⇒ `"Base"=1`  

⇒ `"Perpendicular"=sqrt(3-1)`  

⇒ `"Perpendicular"=sqrt2` 

Here we have to find:  `(tan^2θ-cosec^2θ)/(tan^2θ+cosec^2θ)` 

⇒`(tan^2θ-cosec^2θ)/(tan^2θ+cosec^2θ) = (2/1-3/2)/(2/1+3/2)`  

⇒`(tan^2θ-cosec^2θ)/(tan^2θ+cosec^2θ)=(1/2)/(7/2)` 

⇒`(tan^2θ-cosec^2θ)/(tan^2θ+cosec^2θ)=1/7` 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.5 | Q 18 | पृष्ठ ५७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If sin θ =3/5, where θ is an acute angle, find the value of cos θ.


If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ


Without using trigonometric tables evaluate:

`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`


if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`


if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`


Solve.
`cos55/sin35+cot35/tan55`


Show that : sin 42° sec 48° + cos 42° cosec 48° = 2


Express the following in terms of angles between 0° and 45°:

cosec68° + cot72°


For triangle ABC, show that : `sin  (A + B)/2 = cos  C/2`


Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`


Use tables to find the acute angle θ, if the value of cos θ is 0.9848


Evaluate:

`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`


Evaluate:

`sec26^@ sin64^@ + (cosec33^@)/sec57^@`


If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]


If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:


If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]


If 8 tan x = 15, then sin x − cos x is equal to 


If \[\tan \theta = \frac{3}{4}\]  then cos2 θ − sin2 θ = 


A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.


If sec A + tan A = x, then sec A = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×