Advertisements
Advertisements
प्रश्न
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
विकल्प
\[\frac{4}{7}\]
\[\frac{3}{7}\]
\[\frac{2}{7}\]
\[\frac{1}{7}\]
उत्तर
Given that:
`sec^2θ=3`
`secθ=sqrt3`
We need to find the value of the expression
`(tan^2θ-cosec^2θ)/(tan^2θ+cosec^2θ)`
`"since" secθ="Hypotenuse"/"Base"`. so
⇒` "Hypotenuse"= sqrt3`
⇒ `"Base"=1`
⇒ `"Perpendicular"=sqrt(3-1)`
⇒ `"Perpendicular"=sqrt2`
Here we have to find: `(tan^2θ-cosec^2θ)/(tan^2θ+cosec^2θ)`
⇒`(tan^2θ-cosec^2θ)/(tan^2θ+cosec^2θ) = (2/1-3/2)/(2/1+3/2)`
⇒`(tan^2θ-cosec^2θ)/(tan^2θ+cosec^2θ)=(1/2)/(7/2)`
⇒`(tan^2θ-cosec^2θ)/(tan^2θ+cosec^2θ)=1/7`
APPEARS IN
संबंधित प्रश्न
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Solve.
`cos55/sin35+cot35/tan55`
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
If 8 tan x = 15, then sin x − cos x is equal to
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
If sec A + tan A = x, then sec A = ______.