हिंदी

If 5 tan θ − 4 = 0, then the value of 5sin⁡θ−4cos⁡θ5sin⁡θ+4cos⁡θ is: - Mathematics

Advertisements
Advertisements

प्रश्न

If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:

विकल्प

  • \[\frac{5}{3}\]

  • \[\frac{5}{6}\]

  •  0

  • \[\frac{1}{6}\]

MCQ

उत्तर

0

Explanation:

Given that: `5 tan θ-4=0`.We have to find the value of the following expression

`(5 sin θ-4 cos θ)/(5 sin θ+4 cos θ)`

Since `5 tan θ-=0 ⇒ tan θ=4/5` 

We know that:`tan θ= "Prependicular"/"Base"` 

`⇒"Base"=5`

`⇒"Perpendicular"=4`

`⇒"Hypotenuse"=sqrt( ("Perpendicular")^2+("Base")^2)`

`⇒"Hypotenuse"=sqrt(16+25)`

⇒ `"Hypotenuse"=sqrt41`

Since `sinθ ="Perpendicular"/"Hypotenuse" and Cos θ ="Base"/"Hypotenuse"`

Now we find

`( sin θ-4 cos θ)/(5 sinθ+4 cos θ)`

= `(5xx4/sqrt41-4xx5/sqrt41)/(5xx4/sqrt41+4xx5/sqrt41)`

=`(20/sqrt41-20/sqrt41)/(20/sqrt41+20/sqrt41)` 

= 0 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.5 | Q 3 | पृष्ठ ५६

वीडियो ट्यूटोरियलVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×