Advertisements
Advertisements
प्रश्न
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
उत्तर
From the tables, it is clear that cos 46° 30’ = 0.6884
cos q − cos 46° 30’ = 0.6885 − 0.6884 = 0.0001
From the tables, diff of 1’ = 0.0002
Hence, θ = 46° 30’ − 1’ = 46° 29’
APPEARS IN
संबंधित प्रश्न
`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`
Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;
(i) cosec 69º + cot 69º
(ii) sin 81º + tan 81º
(iii) sin 72º + cot 72º
solve.
cos240° + cos250°
Evaluate:
cosec (65° + A) – sec (25° – A)
If A and B are complementary angles, prove that:
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
Express the following in term of angles between 0° and 45° :
cosec 68° + cot 72°
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.