Advertisements
Advertisements
प्रश्न
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
विकल्प
−2
2
1
0
उत्तर
We have to find the value of the following expression
`(tan 55°)/(cot 35°)+cot 1° cot 2° cot 3°.......cot 90°`
= `(tan 55°)/(cot 35°)+cot 1° cot 2° cot 3° ........ cot 90°`
`= tan (90°-35°)/cot 35°+cot (90°-89°)cot (90°-88°)cot(90°-87°)°......cot 87 cot 88 cot 89........ cot 90°`
`= (cot 35°)/(cot 35°)+tan 89° tan 88° tan 87°...... cot 87° cot 88° cot 89°.......cot 90°`
=` 1xx1xx1xx1........xx0`
`= 1 `
`"As cot " 90°=0`
APPEARS IN
संबंधित प्रश्न
Solve.
`cos22/sin68`
Evaluate.
sin235° + sin255°
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
Evaluate:
`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`
Evaluate:
14 sin 30° + 6 cos 60° – 5 tan 45°
Prove that:
`(sinthetasin(90^circ - theta))/cot(90^circ - theta) = 1 - sin^2theta`
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
The value of
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
Sin 2B = 2 sin B is true when B is equal to ______.