Advertisements
Advertisements
प्रश्न
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
उत्तर
Given: ` tan θ= 1/sqrt5`
We know that: `tan θ=("Prependicular")/("Base")`
`("Prependicular")/("Base")=1/sqrt5`
`"Hypotenuse"= sqrt( ("Perpendicular")^2+("Base")^2)`
`"Hypotenuse"=sqrt(1+5)`
`"Hypotenuse"=sqrt6`
Now we find, `(cosec^2θ-sec^2θ)/(cosec^2θ+sec^2θ)`
=`(("hypotenuse")^2/("Perpendicular")^2-("hypotenuse")^2/("Base")^2)/(("hypotenuse")^2/("Perpendicular")^2+("hypotenuse")^2/("Base")^2)`
= `((sqrt6)^2/(1)^2-(sqrt6)^2/(sqrt5)^2)/((sqrt6)^2/(1)^2+((sqrt6))/(sqrt5)^2)`
= `(6/1-6/5)/(6/1+6/5)`
=`(24/5)/(36/5)`
=`2/3`
Hence the value of `(cosec^2θ-sec^2θ)/(cosec^2θ+sec^2θ)` is `2/3`
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;
(i) cosec 69º + cot 69º
(ii) sin 81º + tan 81º
(iii) sin 72º + cot 72º
if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Use trigonometrical tables to find tangent of 17° 27'
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°.
If 3 cos θ = 5 sin θ, then the value of
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
The value of cos 1° cos 2° cos 3° ..... cos 180° is
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
In the following figure the value of cos ϕ is
The value of tan 72° tan 18° is
If cot( 90 – A ) = 1, then ∠A = ?