Advertisements
Advertisements
प्रश्न
The value of tan 72° tan 18° is
विकल्प
0
1
18°
72°
उत्तर
1
Explanation;
Hint:
tan 72° . tan 18° = tan 72° . tan (90° – 72°)
= tan 72° . cot 72°
= `tan 72^circ xx 1/tan 72^circ`
= 1
APPEARS IN
संबंधित प्रश्न
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
Write all the other trigonometric ratios of ∠A in terms of sec A.
solve.
cos240° + cos250°
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2