Advertisements
Advertisements
Question
The value of tan 72° tan 18° is
Options
0
1
18°
72°
Solution
1
Explanation;
Hint:
tan 72° . tan 18° = tan 72° . tan (90° – 72°)
= tan 72° . cot 72°
= `tan 72^circ xx 1/tan 72^circ`
= 1
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
Use tables to find cosine of 8° 12’
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
Evaluate: `(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is