Advertisements
Advertisements
प्रश्न
The value of tan 72° tan 18° is
पर्याय
0
1
18°
72°
उत्तर
1
Explanation;
Hint:
tan 72° . tan 18° = tan 72° . tan (90° – 72°)
= tan 72° . cot 72°
= `tan 72^circ xx 1/tan 72^circ`
= 1
APPEARS IN
संबंधित प्रश्न
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
Use tables to find sine of 34° 42'
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
Prove that:
tan (55° - A) - cot (35° + A)
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.