Advertisements
Advertisements
प्रश्न
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
उत्तर
From the tables, it is clear that sin 22° 30' = 0.3827
Hence, θ = 22° 30'
APPEARS IN
संबंधित प्रश्न
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
Solve.
sin42° sin48° - cos42° cos48°
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
In the following figure the value of cos ϕ is
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`