Advertisements
Advertisements
प्रश्न
In the following figure the value of cos ϕ is
पर्याय
\[\frac{5}{4}\]
\[\frac{5}{3}\]
\[\frac{3}{5}\]
\[\frac{4}{5}\]
उत्तर
We should proceed with the fact that sum of angles on one side of a straight line is180°.
So from the given figure,
θ+∅+90°=180° `
So , `θ=90°-∅.............(1) `
Now from the triangle ΔABC,
`sin ∅=4/5`
Now we will use equation (1) in the above,
`sin(90°-∅)=4/5`
Therefore, `cos∅=4/5`
APPEARS IN
संबंधित प्रश्न
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
Solve.
`cos22/sin68`
Solve.
`cos55/sin35+cot35/tan55`
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Use tables to find the acute angle θ, if the value of sin θ is 0.6525
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
Write the maximum and minimum values of sin θ.
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
If A and B are complementary angles, then
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.
If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.