Advertisements
Advertisements
Question
In the following figure the value of cos ϕ is
Options
\[\frac{5}{4}\]
\[\frac{5}{3}\]
\[\frac{3}{5}\]
\[\frac{4}{5}\]
Solution
We should proceed with the fact that sum of angles on one side of a straight line is180°.
So from the given figure,
θ+∅+90°=180° `
So , `θ=90°-∅.............(1) `
Now from the triangle ΔABC,
`sin ∅=4/5`
Now we will use equation (1) in the above,
`sin(90°-∅)=4/5`
Therefore, `cos∅=4/5`
APPEARS IN
RELATED QUESTIONS
If the angle θ= –60º, find the value of cosθ.
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
Evaluate.
sin235° + sin255°
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
If A and B are complementary angles, prove that:
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
If 3 cos θ = 5 sin θ, then the value of
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
Express the following in term of angles between 0° and 45° :
cosec 68° + cot 72°
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
Solve: 2cos2θ + sin θ - 2 = 0.
If tan θ = cot 37°, then the value of θ is
`(sin 75^circ)/(cos 15^circ)` = ?
`tan 47^circ/cot 43^circ` = 1
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)