Advertisements
Advertisements
Question
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
Solution
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
= `sec(90^@-64^@)sin64^@ + (cosec(90^@-57^@))/sec57^@`
= `cosec64^@sin64^@ + sec57^@/sec57^@`
= 1 + 1
= 2
APPEARS IN
RELATED QUESTIONS
If the angle θ= –60º, find the value of cosθ.
Without using trigonometric tables evaluate the following:
`(i) sin^2 25º + sin^2 65º `
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
The value of the expression (cos2 23° – sin2 67°) is positive.