Advertisements
Advertisements
Question
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
Options
0
1
−1
2
Solution
We have: x sin(90°-θ) cot (90°-θ)=cos (90°-θ)
Here we have to find the value of x
We have: ` x sin (90°-θ)= cos θ, cos (90°-θ)= sin θ , `
`cot (90°-θ)= tan θ,`
⇒ `x sin (90°-θ) cot (90°-θ)= cos (90°-θ)`
⇒` x cos θ tan θ=sin θ`
⇒ `x cos θ xx sin θ/cos θ=sinθ`
⇒ `x=1`
APPEARS IN
RELATED QUESTIONS
If the angle θ= –60º, find the value of cosθ.
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
What is the value of (cos2 67° – sin2 23°)?
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Use tables to find sine of 62° 57'
Use tables to find cosine of 8° 12’
Use trigonometrical tables to find tangent of 17° 27'
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Evaluate: `(sin 80°)/(cos 10°)`+ sin 59° sec 31°
If tan θ = cot 37°, then the value of θ is
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?