Advertisements
Advertisements
Question
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Solution
Since, ABC is a right angled triangle, right angled at B.
So, A + C = 90°
`(secA.cosecC - tanA.cotC)/sinB`
= `(sec(90^circ - C).cosecC - tan(90^circ - C).cotC)/sin90^circ`
= `(cosecC.cosecC - cotC.cotC)/1`
= 1 ...[∵ cosec2θ – cot2θ = 1]
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Use tables to find cosine of 26° 32’
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°