Advertisements
Advertisements
Question
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Solution
sin (90° = θ) = cos θ
cos (90° = θ) = sinθ
3 sin (90° - 80°) cosec 10° + 2 cos (90° - 59°) sec 31°
3 sin 10° cosec 10° + 2 cos 31° sec31°
sin θ cosecθ = 1, cos θ secθ = 1
3 + 2 = 5
APPEARS IN
RELATED QUESTIONS
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
Solve.
`cos55/sin35+cot35/tan55`
Find the value of angle A, where 0° ≤ A ≤ 90°.
cos (90° – A) . sec 77° = 1
Prove that:
sin (28° + A) = cos (62° – A)
If A and B are complementary angles, then
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to ______.
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.
`tan 47^circ/cot 43^circ` = 1