Advertisements
Advertisements
Question
Find the value of angle A, where 0° ≤ A ≤ 90°.
cos (90° – A) . sec 77° = 1
Solution
cos (90° – A) . sec 77° = 1
`sinA. 1/(cos77^circ) = 1`
sin A = cos 77°
= cos (90° – 13°)
= sin 13°
A = 13°
APPEARS IN
RELATED QUESTIONS
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
If tan A = cot B, prove that A + B = 90
Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
cos(90° - A) · sec 77° = 1
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is
If tan θ = 1, then sin θ . cos θ = ?
In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.