Advertisements
Advertisements
Question
If tan θ = 1, then sin θ . cos θ = ?
Solution
tan θ = 1 ......[Given]
∴ θ = 45° ......[∵ tan45° = 1]
∴ sin θ . cos θ = sin 45° cos 45°
= `1/sqrt(2)*1/sqrt(2)`
= `1/2`
APPEARS IN
RELATED QUESTIONS
`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
Write all the other trigonometric ratios of ∠A in terms of sec A.
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`
Solve.
`sec75/(cosec15)`
Evaluate.
`cos^2 26^@+cos65^@sin26^@+tan36^@/cot54^@`
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Use trigonometrical tables to find tangent of 37°
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)
If A and B are complementary angles, then
The value of tan 1° tan 2° tan 3° ...... tan 89° is
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
Evaluate: `(sin 80°)/(cos 10°)`+ sin 59° sec 31°
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
cos(90° - A) · sec 77° = 1
If sec A + tan A = x, then sec A = ______.