Advertisements
Advertisements
Question
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
Options
−2
2
1
0
Solution
We have to find the value of the following expression
`(tan 55°)/(cot 35°)+cot 1° cot 2° cot 3°.......cot 90°`
= `(tan 55°)/(cot 35°)+cot 1° cot 2° cot 3° ........ cot 90°`
`= tan (90°-35°)/cot 35°+cot (90°-89°)cot (90°-88°)cot(90°-87°)°......cot 87 cot 88 cot 89........ cot 90°`
`= (cot 35°)/(cot 35°)+tan 89° tan 88° tan 87°...... cot 87° cot 88° cot 89°.......cot 90°`
=` 1xx1xx1xx1........xx0`
`= 1 `
`"As cot " 90°=0`
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Solve.
sin15° cos75° + cos15° sin75°
Find the value of angle A, where 0° ≤ A ≤ 90°.
cos (90° – A) . sec 77° = 1
Use tables to find cosine of 9° 23’ + 15° 54’
Use trigonometrical tables to find tangent of 37°
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
Prove that:
`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0
If tanθ = 2, find the values of other trigonometric ratios.
The value of tan 10° tan 15° tan 75° tan 80° is
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to ______.
If ∆ABC is right angled at C, then the value of cos (A + B) is ______.
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
Evaluate: `(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.