English

P the Value of Tan 55 ° Cot 35 ° + Cot 1° Cot 2° Cot 3° .... Cot 90°, is - Mathematics

Advertisements
Advertisements

Question

The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is

Options

  •  −2

  •  2

  • 1

  • 0

MCQ

Solution

We have to find the value of the following expression 

`(tan 55°)/(cot 35°)+cot 1° cot 2° cot 3°.......cot 90°` 

= `(tan 55°)/(cot 35°)+cot 1° cot 2° cot 3° ........ cot 90°` 

`= tan (90°-35°)/cot 35°+cot (90°-89°)cot (90°-88°)cot(90°-87°)°......cot 87 cot 88 cot 89........ cot 90°` 

`= (cot 35°)/(cot 35°)+tan 89° tan 88° tan 87°...... cot 87° cot 88° cot 89°.......cot 90°`  

=` 1xx1xx1xx1........xx0` 

`= 1 `

`"As cot " 90°=0`

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Trigonometric Ratios - Exercise 10.5 [Page 59]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 10 Trigonometric Ratios
Exercise 10.5 | Q 33 | Page 59

RELATED QUESTIONS

Without using trigonometric tables, evaluate the following:

`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`


If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A


if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`


if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`


Solve.
sin15° cos75° + cos15° sin75°


Find the value of angle A, where 0° ≤ A ≤ 90°.

cos (90° – A) . sec 77° = 1


Use tables to find cosine of 9° 23’ + 15° 54’


Use trigonometrical tables to find tangent of 37°


Use tables to find the acute angle θ, if the value of tan θ is 0.4741


Prove that:

`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`


Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0


If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A


Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0


If tanθ = 2, find the values of other trigonometric ratios.


The value of tan 10° tan 15° tan 75° tan 80° is 


\[\frac{2 \tan 30°}{1 - \tan^2 30°}\]  is equal to ______.


If ∆ABC is right angled at C, then the value of cos (A + B) is ______.


Without using trigonometric tables, prove that:

sec70° sin20° + cos20° cosec70° = 2


Evaluate: `(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`


In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×