Advertisements
Advertisements
Question
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Solution
Given `sqrt3 tan theta = 3 sin theta`
We have to find the value of `sin^2 theta -cos^2 theta`
`sqrt3 tan theta = 3 sin theta`
`=> sqrt3 sin theta/cos theta = 3 sin theta`
`=> cos theta = sqrt3/3`
Therefore
`sin^2 theta - cos^2 theta = 1 - cos^2 theta - cos^2 theta` (since `sin^2 theta + cos^2 theta = 1`)
`= 1 - 2 cos^2 theta`
`= 1 - 2 xx (1/sqrt3)^2`
`= 1/3`
Hence, the value of the expression is 1/3
APPEARS IN
RELATED QUESTIONS
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Solve.
`tan47/cot43`
Solve.
sin15° cos75° + cos15° sin75°
Evaluate:
cosec (65° + A) – sec (25° – A)
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
The value of tan 1° tan 2° tan 3° ...... tan 89° is
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
Find the sine ratio of θ in standard position whose terminal arm passes through (4,3)
Express the following in term of angles between 0° and 45° :
cosec 68° + cot 72°
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
`(sin 75^circ)/(cos 15^circ)` = ?
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.
The value of (tan1° tan2° tan3° ... tan89°) is ______.