English

If Sqrt3 Tan Theta = 3 Sin Theta` Find the Value of Sin^2 Theta - Cos^2 Theta - Mathematics

Advertisements
Advertisements

Question

if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`

Solution

Given `sqrt3 tan theta = 3 sin theta`

We have to find the value of `sin^2 theta -cos^2 theta`

`sqrt3 tan theta = 3 sin theta`

`=> sqrt3 sin theta/cos theta = 3 sin theta`

`=> cos theta = sqrt3/3`

Therefore

`sin^2 theta - cos^2 theta = 1 - cos^2 theta - cos^2 theta`           (since `sin^2 theta + cos^2 theta = 1`)

`= 1 - 2 cos^2 theta`

`= 1 -  2 xx (1/sqrt3)^2`

`=   1/3`

Hence, the value of the expression is  1/3

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.2 [Page 54]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.2 | Q 10 | Page 54

RELATED QUESTIONS

if `cos theta = 4/5` find all other trigonometric ratios of angles θ


if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`


Solve.
`tan47/cot43`


Solve.
sin15° cos75° + cos15° sin75°


Evaluate:

cosec (65° + A) – sec (25° – A)


Evaluate:

`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`


If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]  write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\] 


If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?


The value of tan 1° tan 2° tan 3° ...... tan 89° is 


If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\]  is equal to 


Prove that :

tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]


Find the sine ratio of θ in standard position whose terminal arm passes through (4,3)


Express the following in term of angles between 0° and 45° :

cosec 68° + cot 72°


Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.


Find the value of the following:

`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`


`(sin 75^circ)/(cos 15^circ)` = ?


2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.


If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.


The value of (tan1° tan2° tan3° ... tan89°) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×