Advertisements
Advertisements
प्रश्न
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
उत्तर
Given `sqrt3 tan theta = 3 sin theta`
We have to find the value of `sin^2 theta -cos^2 theta`
`sqrt3 tan theta = 3 sin theta`
`=> sqrt3 sin theta/cos theta = 3 sin theta`
`=> cos theta = sqrt3/3`
Therefore
`sin^2 theta - cos^2 theta = 1 - cos^2 theta - cos^2 theta` (since `sin^2 theta + cos^2 theta = 1`)
`= 1 - 2 cos^2 theta`
`= 1 - 2 xx (1/sqrt3)^2`
`= 1/3`
Hence, the value of the expression is 1/3
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
Evaluate `(tan 26^@)/(cot 64^@)`
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Use tables to find sine of 10° 20' + 20° 45'
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
If tanθ = 2, find the values of other trigonometric ratios.
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
Write the maximum and minimum values of sin θ.
Write the value of tan 10° tan 15° tan 75° tan 80°?
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.
`(sin 75^circ)/(cos 15^circ)` = ?
Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.