Advertisements
Advertisements
प्रश्न
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
उत्तर
We know that for a triangle ΔABC
∠A + ∠B + ∠C = 180°
`(angleB + angleA)/2 = 90^circ - (angleC)/2`
`sin((A + B)/2) = sin(90^circ - C/2)`
= `cos(C/2)`
APPEARS IN
संबंधित प्रश्न
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.
The value of (tan1° tan2° tan3° ... tan89°) is ______.