Advertisements
Advertisements
प्रश्न
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
पर्याय
0
1
−1
2
उत्तर
We have: x sin(90°-θ) cot (90°-θ)=cos (90°-θ)
Here we have to find the value of x
We have: ` x sin (90°-θ)= cos θ, cos (90°-θ)= sin θ , `
`cot (90°-θ)= tan θ,`
⇒ `x sin (90°-θ) cot (90°-θ)= cos (90°-θ)`
⇒` x cos θ tan θ=sin θ`
⇒ `x cos θ xx sin θ/cos θ=sinθ`
⇒ `x=1`
APPEARS IN
संबंधित प्रश्न
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
Solve.
`sec75/(cosec15)`
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Use trigonometrical tables to find tangent of 42° 18'
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
The value of tan 10° tan 15° tan 75° tan 80° is
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.
Sin 2B = 2 sin B is true when B is equal to ______.