मराठी

The Value of Tan 10° Tan 15° Tan 75° Tan 80° is - Mathematics

Advertisements
Advertisements

प्रश्न

The value of tan 10° tan 15° tan 75° tan 80° is 

पर्याय

  • −1

  • 0

  • 1

  • None of these

MCQ

उत्तर

Here we have to find: ` tan 10° tan 15° tan75° tan 80° ` 

Now 

`tan 10° tan 15° tan75° tan 80° ` 

=`tan (90°-80°) tan (90°-75°) tan 80° `  

= `cot 80° cot 75° tan 75° tan 80°` 

=`(cot 80° tan 80°)(cot 75° tan 75°)` 

=`1xx1`          `   [ "since" cot θ  tanθ =1]` 

=` 1` 

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.5 | Q 21 | पृष्ठ ५८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°


If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.


if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`


Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`


Evaluate:

`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`


Find the value of x, if sin 3x = 2 sin 30° cos 30°


Find the value of angle A, where 0° ≤ A ≤ 90°.

sin (90° – 3A) . cosec 42° = 1


Use tables to find cosine of 2° 4’


Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0


If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4` 


If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:


\[\frac{2 \tan 30° }{1 + \tan^2 30°}\]  is equal to


If \[\cos \theta = \frac{2}{3}\]  then 2 sec2 θ + 2 tan2 θ − 7 is equal to 


Prove that:

\[\frac{sin\theta  \cos(90°  - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2


Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`


Find the value of the following:

`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`


If x and y are complementary angles, then ______.


If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×