Advertisements
Advertisements
प्रश्न
The value of tan 10° tan 15° tan 75° tan 80° is
पर्याय
−1
0
1
None of these
उत्तर
Here we have to find: ` tan 10° tan 15° tan75° tan 80° `
Now
`tan 10° tan 15° tan75° tan 80° `
=`tan (90°-80°) tan (90°-75°) tan 80° `
= `cot 80° cot 75° tan 75° tan 80°`
=`(cot 80° tan 80°)(cot 75° tan 75°)`
=`1xx1` ` [ "since" cot θ tanθ =1]`
=` 1`
APPEARS IN
संबंधित प्रश्न
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Use tables to find cosine of 2° 4’
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
If x and y are complementary angles, then ______.
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.