Advertisements
Advertisements
प्रश्न
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
उत्तर
∵ 23 = 90 – 67 & 15 = 90 – 75
∴ sin 67° + cos 75°
= sin (90 – 23)° + cos (90 – 15)°
= cos 23° + sin 15°.
APPEARS IN
संबंधित प्रश्न
Evaluate `(sin 18^@)/(cos 72^@)`
What is the value of (cos2 67° – sin2 23°)?
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
Evaluate:
tan(55° - A) - cot(35° + A)
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Use tables to find sine of 21°
Use trigonometrical tables to find tangent of 42° 18'
Prove that:
sec (70° – θ) = cosec (20° + θ)
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°.
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
If 3 cos θ = 5 sin θ, then the value of
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
If ∆ABC is right angled at C, then the value of cos (A + B) is ______.
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
If tan θ = 1, then sin θ . cos θ = ?