Advertisements
Advertisements
प्रश्न
Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°.
उत्तर
Given that: `Cos 1° cos 2° cos3°...... cos179° cos 180°`
= `cos1° cos 2° cos 3°.... cos 179° cos 180°`
=`cos1° cos2° cos 3°....cos 89° cos90° cos 91° cos 179 cos 180`
= `cos1° cos2° cos 3°.....cos89°xx0..... cos 179° cos 180°`
=`0`
cos 90°=0
Hence the value of `cos 1° cos 2° cos3°..... cos 179° cos 180° is 0`
APPEARS IN
संबंधित प्रश्न
Evaluate `(tan 26^@)/(cot 64^@)`
solve.
sec2 18° - cot2 72°
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
Prove that:
sec (70° – θ) = cosec (20° + θ)
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
If A and B are complementary angles, prove that:
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
The value of tan 1° tan 2° tan 3° ...... tan 89° is
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.
If sec A + tan A = x, then sec A = ______.
The value of the expression (cos2 23° – sin2 67°) is positive.