Advertisements
Advertisements
प्रश्न
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
उत्तर
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
= `cos(90^circ - 20^circ)/(sin20^circ) + cos(90^circ - 31^circ)/(sin31^circ) - 8(1/2)^2`
= `sin20^circ/(sin20^circ) + sin31^circ/(sin31^circ) - 2`
= 1 + 1 – 2
= 0
APPEARS IN
संबंधित प्रश्न
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
Evaluate cosec 31° − sec 59°
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Use tables to find cosine of 8° 12’
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
Solve: 2cos2θ + sin θ - 2 = 0.
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.