Advertisements
Advertisements
प्रश्न
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
उत्तर
In ∆ABC, we have
A + B + C = 180º
⇒ B + C = 180º – A
`\Rightarrow \frac{B+C}{2}=\text{ }90^\text{o}-\frac{A}{2}`
Taking tan on both sides, we get
`\Rightarrow \tan ( \frac{B+C}{2})=\tan( 90^\text{o}-\frac{A}{2})`
`\Rightarrow \tan ( \frac{B+C}{2} )=\cot \frac{A}{2}`
APPEARS IN
संबंधित प्रश्न
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Use tables to find sine of 34° 42'
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to