Advertisements
Advertisements
प्रश्न
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
उत्तर
2 sin A − 1 = 0
`=> sin A = 1/2`
We know `sin 30^circ = 1/2`
So, A = 30°
L.H.S. = sin 3 A = sin 90° = 1
R.H.S. = 3 sin A – 4 sin3 A
= 3 sin 30° – 4 sin3 30°
= `3(1/2) - 4(1/2)^3`
= `3/2 - 1/2`
= 1
L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
What is the value of (1 − cos2 θ) cosec2 θ?
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`