मराठी

Express (Sin 67° + Cos 75°) in Terms of Trigonometric Ratios of the Angle Between 0° and 45°. - Mathematics

Advertisements
Advertisements

प्रश्न

Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.

बेरीज

उत्तर

(sin 67° + cos 75°)
= (sin (90°23°) + cos (90°15°))      .....( sin(90°θ) = cosθ and cos(90°θ) = sinθ)
= (cos 23°+ sin 15°)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) 30/4/3

संबंधित प्रश्‍न

Prove the following trigonometric identities:

`(1 - cos^2 A) cosec^2 A = 1`


Prove the following identities:

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`


Prove the following identities:

(1 + cot A – cosec A)(1 + tan A + sec A) = 2


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


If x = a cos θ and y = b cot θ, show that:

`a^2/x^2 - b^2/y^2 = 1` 


If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`


If `sqrt(3) sin theta = cos theta  and theta ` is an acute angle, find the value of θ .


`If sin theta = cos( theta - 45° ),where   theta   " is   acute, find the value of "theta` .


What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]


Prove the following identity : 

`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`


Prove the following identity : 

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.


Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.


Prove the following identities.

cot θ + tan θ = sec θ cosec θ


If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to


a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to


Choose the correct alternative:

sin θ = `1/2`, then θ = ?


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×