Advertisements
Advertisements
प्रश्न
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
उत्तर
We have,
\[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]=` (-1(sec ^2 θ-tan ^2θ ))/(-1 (cosec^2 θ-cot ^2 θ))`
=`( secx^2θ-tan^2 θ)/ (cosec ^2 θ-cot^2 θ)`
We know that,
`sec^2θ-tan ^2θ=1`
` cosec^2 θ-cot ^2θ=1`
Therefore,
`(tan ^2θ-sec^2 θ)/(cot^2θ-cosec^2 θ)=1/1`
=1
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
Show that : tan 10° tan 15° tan 75° tan 80° = 1
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove that sec2θ − cos2θ = tan2θ + sin2θ
If cos A + cos2A = 1, then sin2A + sin4 A = ?
Complete the following activity to prove:
cotθ + tanθ = cosecθ × secθ
Activity: L.H.S. = cotθ + tanθ
= `cosθ/sinθ + square/cosθ`
= `(square + sin^2theta)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ....... ∵ `square`
= `1/sinθ xx 1/cosθ`
= `square xx secθ`
∴ L.H.S. = R.H.S.
Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.