Advertisements
Advertisements
प्रश्न
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
उत्तर
We have,
tan α = n tan β
⇒ `tan β = tan α/n`
⇒ `cot β = n/tan α`
sin α = m sin β
⇒ `sin β = sin α /m`
⇒ `cosec β = m/sin α`
Since, cosec2 β - cot2 β = 1
⇒ `m^2/sin^2 α - n^2/tan^2 α = 1`
⇒ `m^2/sin^2 α - (n^2cos^2α )/sin^2 α = 1`
⇒ m2 - n2cos2 α = sin2 α
⇒ m2 - n2cos2 α = 1 - cos2 α
⇒ m2 - 1 = (n2 - 1)cos2 α
⇒ cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.