Advertisements
Advertisements
प्रश्न
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
उत्तर
It is given that,
\[\cos\left( \alpha + \beta \right) = 0\]
\[ \Rightarrow \cos\left( \alpha + \beta \right) = \cos90° \left( \cos90° = 0 \right)\]
\[ \Rightarrow \alpha + \beta = 90° \]
\[ \Rightarrow \alpha = 90°- \beta\]
\[\text{ Now, put }\alpha = 90°- \beta in \sin\left( \alpha - \beta \right) . \]
\[ \therefore \sin\left( \alpha - \beta \right)\]
\[ = \sin\left( 90° - \beta - \beta \right)\]
\[ = \sin\left( 90°- 2\beta \right) \]
\[ = \cos2\beta \left[ \sin\left( 90° - \theta \right) = \cos\theta \right]\]
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
Write the value of tan1° tan 2° ........ tan 89° .
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ