मराठी

If Cos ( α + β = 0 , Then Sin ( α − β ) Can Be Reduced to - Mathematics

Advertisements
Advertisements

प्रश्न

If  cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to  

 

बेरीज

उत्तर

It is given that,

\[\cos\left( \alpha + \beta \right) = 0\]

\[ \Rightarrow \cos\left( \alpha + \beta \right) = \cos90° \left( \cos90° = 0 \right)\]

\[ \Rightarrow \alpha + \beta = 90° \]

\[ \Rightarrow \alpha = 90°- \beta\]

\[\text{ Now, put }\alpha = 90°- \beta in \sin\left( \alpha - \beta \right) . \]

\[ \therefore \sin\left( \alpha - \beta \right)\]

\[ = \sin\left( 90° - \beta - \beta \right)\]

\[ = \sin\left( 90°- 2\beta \right) \]

\[ = \cos2\beta \left[ \sin\left( 90° - \theta \right) = \cos\theta \right]\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.4 | Q 33 | पृष्ठ ५९

संबंधित प्रश्‍न

Prove the following trigonometric identities:

(i) (1 – sin2θ) sec2θ = 1

(ii) cos2θ (1 + tan2θ) = 1


Prove the following trigonometric identities.

sec6θ = tan6θ + 3 tan2θ sec2θ + 1


Prove the following identities:

cot2 A – cos2 A = cos2 A . cot2 A


Prove the following identities:

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


If x = a cos θ and y = b cot θ, show that:

`a^2/x^2 - b^2/y^2 = 1` 


Prove that:

`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`


`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`


`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`


Write the value of `(1 + tan^2 theta ) cos^2 theta`. 


Write the value of tan1° tan 2°   ........ tan 89° .


Prove that:

Sin4θ - cos4θ = 1 - 2cos2θ


What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?


Prove the following identity : 

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


Prove the following identity :

`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`


A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.


Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`


Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0


Prove the following identities.

`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec"  theta - 1)/("cosec"  theta + 1)`


Prove the following identities.

`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`


Prove that `(sintheta + "cosec"  theta)/sin theta` = 2 + cot2θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×