Advertisements
Advertisements
प्रश्न
Write the value of tan1° tan 2° ........ tan 89° .
उत्तर
Tan 1° tan 2° … tan 89°
= tan 1° tan 2° tan 3° … tan 45° … tan 87° tan 88° tan 89°
= tan 1° tan 2° tan 3° … tan 45° … cot(90° − 87° ) cot(90° − 88° ) cot(90° − 89° )
= tan 1° tan 2° tan 3° … tan 45° … cot 3° cot 2° cot 1°
`= tan 1° × tan 2° × tan 3° × …× 1 × …× 1/( tan 3° )xx 1/ (tan 2°) xx 1/ (tan 1°)`
= 1
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
Prove that sin4A – cos4A = 1 – 2cos2A
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.