Advertisements
Advertisements
प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
उत्तर
LHS = sin6θ + cos6θ
= (sin2θ)3 + (cos2θ)3
= (sin2θ + cos2θ) (sin4θ + cos4θ - sin2θ⋅cos2θ)
= (1)[(sin2θ + cos2θ)2 - 2sin2θ⋅cos2θ - sin2θ⋅cos2θ]
= (1)[(1)2 - 3sin2θ⋅cos2θ]
= 1 - 3sin2θ ⋅ cos2θ
= RHS
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
Choose the correct alternative:
Which is not correct formula?
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.