Advertisements
Advertisements
प्रश्न
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
उत्तर
sinθcotθ + sinθcosecθ = 1 + cosθ
LHS = `sinθcosθ/sinθ + sinθ1/sinθ`
= cosθ + 1 = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B