Advertisements
Advertisements
प्रश्न
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
उत्तर
sinθcotθ + sinθcosecθ = 1 + cosθ
LHS = `sinθcosθ/sinθ + sinθ1/sinθ`
= cosθ + 1 = RHS
APPEARS IN
संबंधित प्रश्न
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
9 sec2 A − 9 tan2 A is equal to
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1
Find the value of sin2θ + cos2θ
Solution:
In Δ ABC, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(Pythagoras theorem)
Divide both sides by AC2
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
But `"AB"/"AC" = square and "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`