Advertisements
Advertisements
प्रश्न
9 sec2 A − 9 tan2 A is equal to
विकल्प
1
9
8
0
उत्तर
Given:
`9 sec^2 A-9 tan^2 A`
`=9 (sec^2 A-tan^2 A)`
We know that, `sec^2 A-tan^2 A=1`
Therefore, `9 sec^2 A-9 tan^2 A=9`
APPEARS IN
संबंधित प्रश्न
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
What is the value of (1 − cos2 θ) cosec2 θ?
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
If tan θ × A = sin θ, then A = ?
Prove that sec2θ − cos2θ = tan2θ + sin2θ
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
Prove that sec2θ – cos2θ = tan2θ + sin2θ
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.