Advertisements
Advertisements
प्रश्न
If tan θ × A = sin θ, then A = ?
उत्तर
tan θ × A = sin θ .....[Given]
∴ `(sin theta)/(cos theta) xx "A"` = sin θ
∴`1/(cos theta) xx "A"` = 1
∴ A = cos θ
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Show that : tan 10° tan 15° tan 75° tan 80° = 1
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
`(1 + cot^2 theta ) sin^2 theta =1`
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
cos4 A − sin4 A is equal to ______.
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
Prove that sin4A – cos4A = 1 – 2cos2A
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)