Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
उत्तर
LHS = `(1 - tanA)^2 + (1 + tanA)^2`
= `1 + tan^2A - 2tanA + 1 + tan^2A + 2tanA`
= `2(1 + tan^2A) = 2sec^2A` = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
If x = a tan θ and y = b sec θ then
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1