Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
उत्तर
LHS = `(1 - tanA)^2 + (1 + tanA)^2`
= `1 + tan^2A - 2tanA + 1 + tan^2A + 2tanA`
= `2(1 + tan^2A) = 2sec^2A` = RHS
APPEARS IN
संबंधित प्रश्न
As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
If sec θ = `25/7`, then find the value of tan θ.
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.
If tan α + cot α = 2, then tan20α + cot20α = ______.