Advertisements
Advertisements
प्रश्न
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
उत्तर
LHS = `cosec^4A - cosec^2A`
= `cosec^2A(cosec^2A - 1)`
RHS = `cot^4A + cot^2A`
= `cot^2A(cot^2A + 1)`
= `(cosec^2A - 1)cosec^2A`
Thus , LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
If 1 – cos2θ = `1/4`, then θ = ?