मराठी

`Tan Theta /((1 - Cot Theta )) + Cot Theta /((1 - Tan Theta)) = (1+ Sec Theta Cosec Theta)` - Mathematics

Advertisements
Advertisements

प्रश्न

`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec  theta)`

उत्तर

LHS= `tan theta/((1-cot theta))+ cot theta/((1-tan theta))`

      =`tan theta/((1-cos theta/sin theta)) + cot theta/((1-sin theta/cos theta))`

     =`(sin theta tan theta)/((sin theta- cos theta))+(cos theta cot theta)/((cos theta - sin theta))`

    =`(sin  theta  xx (sin theta) / (cos theta) cos theta xx (cos theta) / (sin theta))/((sin theta - cos theta))`

   =`((sin ^2 theta  cos ^2 theta)/(cos theta   sin theta))/((sin theta-cos theta))`

   =`( sin ^3 theta - cos ^3 theta)/(cos theta sin theta (sin theta - cos theta))`

 =` ((sin theta - cos theta)(sin ^2 theta + sin theta cos theta + cos ^2theta ))/(cos theta sin theta (sin theta- costheta))`

 =`(1+ sin theta cos theta)/(cos theta sin theta)`

 =`1/(cos theta sin theta)+(sin theta cos theta)/(cos theta  sin theta)`

  =`1/(cos theta sin theta)+ (sin theta cos theta)/(cos theta sin theta)`

  =`sectheta cosec  theta +1` 

  =`1+ sec theta  cosec  theta`

  =RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 1

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 1 | Q 12

संबंधित प्रश्‍न

Prove the following trigonometric identities:

(i) (1 – sin2θ) sec2θ = 1

(ii) cos2θ (1 + tan2θ) = 1


`(1+tan^2A)/(1+cot^2A)` = ______.


Prove the following trigonometric identities.

`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta  + cot theta`


Prove the following identities:

`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`


Prove that:

(sec A − tan A)2 (1 + sin A) = (1 − sin A)


`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`


If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.


Prove the following identity :

cosecθ(1 + cosθ)(cosecθ - cotθ) = 1


Prove the following identity :

`tan^2A - sin^2A = tan^2A.sin^2A`


Prove the following identity : 

`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`


Prove the following identity : 

`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq


Prove the following identity : 

`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`


If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2


Without using trigonometric identity , show that :

`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`


Prove that:

`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`


Prove the following identities.

`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ


If 1 – cos2θ = `1/4`, then θ = ?


If tan θ = `7/24`, then to find value of cos θ complete the activity given below.

Activity:

sec2θ = 1 + `square`    ......[Fundamental tri. identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square/576`

sec2θ = `square/576`

sec θ = `square` 

cos θ = `square`     .......`[cos theta = 1/sectheta]`


If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.


(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×